
ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                  2876 

Logical Actions of trees for the comparison of 

Classification Methods 
 

Najma HAMZAOUI
1
, Maha AKBIB

2
, Wafae BAIDA

3
, Abdelfettah SEDQUI

4
, Abdelouahid LYHYAOUI

5
 

Abdelmalek Essaâdi University, LTI Lab, ENSA of Tangier, Tangier, Morocco 

PO Box: 1818, Tangier Principal 

 

Abstract: In this paper, a new approach is presented to compare methods. Many works compare classification methods 

based directly on generated partitions. We   propose, instead, a classification methods comparison, based on the structure of 

logic trees. As result, we obtain grouping of methods and can even measure the distance between them. In this purpose, we 

apply this new approach in two cases. The first case is related to improved performance of assembly system at the dynamic 

management flexibility. The second case deals with the similarity coefficients as key decision able to classify methods. The 

results are very promising. 
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I. INTRODUCTION 

The comparison of classification is one of the open questions 

in data analysis. The need to compare two classifications 

occurs when the study of two investigations on the same 

data set. When there are two partitions made on the same 

individuals, for example, with two sets of variables or two 

algorithms, it is necessary to know if these partitions are 

consistent or if they differ significantly in a sense to be 

clarified. To address this problem, a wide number of studies 

related to results of classification comparison have been 

performed. These works were devoted to the presentation 

and the definition of different indices to compare partitions. 

Most of these indices are presented in relational 

formulations [2,3]. [8,11] cited Cohen’s kappa as a 

coefficient to test the similarity between two partitions by 

comparing their simulated distribution from the same 

partition. A well-known Rand index [4, an asymmetric 

version of Rand [12,13,15] and the corrected Hubert index 

[5] are used for the comparison of nested partitions with 

different number of classes.  In [14], two indices are inspired 

by McNemar test and Jaccard index. Whereas some others 

researchers recommended other coefficients , such as the 

vectorial correlation index introduced by [6] which is identic 

to the coefficient S.Janson and Vegelius index redundancy 

proposed by [7,9] and index of popping [10]. These studies 

for comparing partitions have achieved success both in 

theory and practice. However, in these approaches, 

comparison has been done directly in the resulting classes, 

and not in the dendrograms of these methods of 

classification that give these partitions. That is to say, the 

comparison based on the structure of these partitions is not  

 

 

 

 

taken into consideration. Therefore, a new way of 

comparative research is crucially necessary to evaluate the 

various methods. For example, if we take similarity 

coefficients like as an methods of classification, we find 

researchers have studied differently the comparison of 

[17,16], investigated two characteristics discriminability and 

stability to compare the performance of 20 well-known 

similarity coefficients. Other method was used for 

comparing two hierarchical classifications by associating 

each hierarchical structure, an ultrametric matrix, and then 

calculating the Spearman coefficient between the two 

ultrametric matrix [14].Our work will focuses on comparing 

methods of classification based on calculating the distance 

between their dendrograms from the hierarchical 

classification. 

The objective is to find a formal procedure based on the 

structure of logic trees from logical actions for comparing 

two classifications. We obtain these structures of logic trees 

or hierarchical tree using methods of classifying variables, 

and compare them from the distance Marczewski-Steinhaus 

[1]. This proposal comparison procedure of hierarchical 

trees aims to provide a rational and effective way for 

grouping different classification methods to be a general 

approach, including the choice of the closest and the 

alternative methods. Our goal is to propose an method 

universal applicable to many fields such as industry, 

bioinformatics, philology, botany, sciences socials, social 

studies, astronomy, images, Marketing, diagnosis, medicine, 

astronomy, economic. It aims to: 
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- Fill a gap by providing a method for the comparison of 

several methods of classification based on their dendrograms 

from the hierarchical classification. 

- Compare methods of hierarchical classification (based on 

measures of similarity) based on their dendrograms or 

results algorithms turned into dendrogram to situate them in 

relation to the other on the dendrogram of the proposed 

method, 

- To find classes of methods and recommend the best. 

- To classify each new method of literature and relate it to 

the best and poor classes. 

We will take two examples of application for this method. 

The improved performance of the assembly system at the 

dynamic management of production flexibility and 

responsiveness in order to reduce the number of lines by 

keeping a better range associated with ranges of 

replacement. The second case is of comparing the 20 well-

known similarity coefficients methods which are taken from 

the literature. 

The rest of this paper is structured as follows. Section 2 

presents our proposal method of the classification methods 

comparison based on their dendrograms with applications 

examples. Finally, Section 3 concludes this paper with some 

perspectives. 

II. THE PROPOSED APPROACH 

In this section, we present our approach. The theoretical 

framework of the study is exposed before the presentation of 

the two applications. 

 

 
 

 
 

 
 

Fig. 1.  Trees assembling 

Our method aims to compare the partitions derived from 

methods of hierarchical classification, based on the measures 

of resemblance on their dendrograms. 

For example, we consider in Fig.1 two possible hierarchical 

classifications for the same data {c1 , c1 , c2 , c3 , c4 }. We 

seek for a degree of resemblance between these two 

dendrograms. In the following, we explain in detail how to 

do this. In the case if we don’t have the hierarchical 

classification of partitions, results of classification methods 

must turned into dendrogram to apply our method by 

ascendant agglomerative methods. Then, to provide the 

comparison of several methods of classification, our method 

consists in applying a partitioning algorithm of the distance 

matrix of these methods of classification. We use a 

hierarchical clustering algorithm taking into account the 

criterion of the average link. After that, we get a number of 

groups by making cuts from the classification tree, the 

choice of threshold depends on the criteria (number of 

alternative methods of classification, the closest partitions 

for a given partition, etc) that determine our goals. This 

method has the advantage of providing a global view of 

coherent methods.  

 

A. Hypergraphs generated by trees 

  

According to [1] the assembly trees treated are a special case 

of hypergraphs generated by tree, whose family nodes, has 

special properties. 

Let X={x1 , x1 , x2 , x3 ,… , xn } the set of terminal vertices of 

a tree.  

d−(xi) = 1 , d+(xi) = 0  for every element of X where    

d−(xi) et d+(xi) represent, respectively, interior and exterior 

halves degree of the node xi . Let A the class of all trees. Let 

A ∈A represented by the hypergraph (X, EA )where the 

EAclass edges as defined below: each  v¢X (i.e. each non-

terminal node in the tree generates d+(v) − 1 edges in EA  . 

Such an edge consists of those elements of X which are 

terminal nodes of the subtree generated by v which is 

obtained by considering as v a root ie, assuming 

that d−(v) = 0. 

The construction method of the hypergraph HA  led to the 

following insertion: 

(i) If 𝐻𝐴 = (𝑋,𝐸𝐴) is the hypergraph generated by a 

tree 𝐴 ∈ A as described above, then  𝐸𝐴 = 𝑛 − 1  

(ii) The hypergraph 𝐻𝐴  generated by A ∈A  is not 

simple if at least one of the nodes 

 𝑣 ∈ 𝐴 such as 𝑑+(𝑣) ≥ 2. By definition, a hypergraph  is 

simple if all its edges are distinct. 

B. Distance between trees 

Let X be a finite set such that   EA  = n  ; where  .   is the 

cardinality of the set. Let E∗ is the class of all subsets of X, 

and μ E  measurement of E on E∗  .  

Consider μ E < ∞ ∀ 𝐸 ∈ E∗ . The distance Marczewski-

Steinhaus [1] between two sets E1 and E2 de E∗ is: 

σμ E1, E2 =  

ρ(E1, E2)

μ(E1 ∪ E2)
   si E1 ∪ E2 > 0

0                     si E1 ∪ E2 = 0

          (1) 

  

Withρ(E1, E2) =  μ(E1∆E2), ∆ is the symmetric difference. 

𝑐1  

 
𝑐2  

 

𝑐3  

 

𝑐4  

 
𝑐1  

 
𝑐2  

 

𝑐3  

 

𝑐4  
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Consider that0 ≤ σμ(E1, E2) ≤ 1. Especially, if we consider 

that μc E =  E  and then we take e1 =  E1 , and e2 =  E2  
and  d =  E1 ∩ E2 .  

 

σμc E1 , E2 =
e1 + e2 − 2d

e1 + e2 − d
                                  (2) 

 

We have also: 0 ≤ σμc(E1, E2) ≤ 1 

Consider A1 andA2, elements of A respectively represented 

by hypergraphs HA1 = (X, EA1) and HA2 = (X, EA2). The 

distance between these hypergraphs takes into account the 

specific stage of edges construction. The distance between 

trees is given by the following formula: 

d A1, A2 =
1

n − 1
min
p∈P

 σμ EA1

i , EA2

pi  

n−1

i=1

            (3)    

      

where pi  est le ith   element of the permutation p des n-1 

integers. P is the set of all permutations, σμ(. , . )  is given 

above EA1

i ∈ EA1
  and EA2

pi ∈ EA2
 i=1 a n-1. 

The following facts are implied by the previous definition: 

(i) (A,d) is a metric space 

(ii)  𝑑 𝐴1,𝐴2 ≤ 1, 𝐴1 and 𝐴2 ∈ A. the distance d(.,.) is 

strictly less than 1 if we uses 𝜎𝜇𝑐 (. , . ) instead  of 𝜎𝜇 (. , . ). 

In general, this distance is valid for n-areas trees. We use the 

binary case because the selected structure for ranges 

description is that of binary trees [18] 

 

C. Example of distance between trees 

 

Let X={𝑐1 , 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 } are all components of a product, 

and 𝐴1, 𝐴2 and two possible assemblages trees as shown in 

fig.1. We calculate the proposed distance between the two 

ranges 𝐴1 and 𝐴2 of A, based on the set of all the 

components X.  𝑋 = 4 . 
 
To do this, we seek sets EA1

and EA2
sub-trees corresponding 

to the intermediate stages of the formation of the product. 

These steps are the edges of the hypergraphs HA1 = (X, EA1) 

and HA2 = (X, EA2). According to proposition 1, the number 

of intermediate steps for the formation of the product 

 EA1
 = EA2

 = X -1=3. 

To simplify notations, we set ci = i : 
 

EA1
= { 1,2 ,  3,4 ,  1,2,3,4 } with EA1

1 = {1,2},. EA1

2 =

{3,4} and EA1

i = {1,2,3,4}. 

EA2
= { 1,2 ,  1,2,3 ,  1,2,3,4 } 

 

The distance d A1, A2  given by the formula given by [1] is 

calculated between the components of 𝐸𝐴1
and components 

of permutations of 𝐸𝐴2
. For this, we look for the set P of 

permutations p of 𝐸𝐴2
. P is described as: 

 

{ 1,2 ,  1,2,3 ,  1,2,3,4 }   

With EA1

1 = {1,2},EA1

2 = {1,2,3} 

 and EA1

i = {1,2,3,4}     

{ 1,2 ,  1,2,3,4 ,  1,2,3 }   

avec  EA1

1 = {1,2},EA1

2 = {1,2,3,4}  

and EA1

i = {1,2,3} 

{ 1,2,3 ,  1,2 ,  1,2,3,4 }   

 

The same approach is applied to search EA2

pi  

 

{ 1,2,3 ,  1,2,3,4 ,  1,2 }   

{ 1,2,3,4 ,  1,2 ,  1,2,3 }   

{ 1,2,3,4 ,  1,2,3 ,  1,2 }   

 

We calculate the distance between 𝐸𝐴1
and permutations 

of 𝐸𝐴2
. The minimum values gives us the distance  between 

the trees 𝐴1and 𝐴2. In the case treated above, 𝑑 𝐴1,𝐴2 =
0.25  

 

III. APPLICATIONS 

 

A. Case of assembly 

We take from [20, 21] the case of assembly a ball pen 

described in Fig.2. It is based mainly here on the determined 

ranges in the LAB, to perform our work and show the 

advantages of the method. 
 

 

 

 

 

 

 

 

 
Fig.2. The ball pen 

 

Cap Head Body Cartridge 

Ink Plug 
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Fig.3.The 10 ranges assembly pen 

 

 

III.A.1 Notations    

First note the correspondence between the different 

assertions above and the physical or logical properties about 

the product: 

X ------> the set of all product components to assemble 

A -----> the set of all eligible ranges 

𝐸𝐴1
----> the set of subtrees of tree 𝐴1, describing 

intermediate steps of assembling  𝐻𝐴1 = (𝑋,𝐸𝐴1) implies the 

definition above for the product with components belong to 

X. Fig. 3 shows all eligible ranges of pen obtained from 

LEGA software developed in LAB and describing the set A. 

Remarks: 

 

 Two-disjoint subsets correspond to the elements of 

product assembled in parallel, 

 Two identical subsets correspond to the case where 

the assembling tree is not binary, 

 If we class elements 𝐸𝐴1
, then, the latter element 

describes the finished product. 

 

III.A.2    Calculation of distances: 

The same reasoning use in II.C, applies to the calculation of 

distances between the pen ranges. The ball pen is constitued 

by a head (he), a cartridge (cr), ink (in), a body (bd), a plug 

(pl), and a cap (cp), . 

All components of the pen is: 

X={he, cr, in, bd, pl, cp} 

Head 

 

cartridge 

ink 

body 

plug 

 

cap 

A1 

Head 

 

Cartridge 

Ink 

Body 

 

Plug 

Cap 

A2 

Body 

 

Head 

Cartridge 

Cap 

 

Ink 

Plug 

A3 

Head 

 

cartridge 

Body 

Cap 

Ink 

 

plug 

A4 

Head 

Cartridge 

Body 

 

Ink 

 

Plug 

cap 

A5 

Body 

head 

Cap 

 

Cartridge 

 

Ink 

plug 

A6 

Body 

Head 

Cartridge 

 

Ink 

Cap 

plug 

A7 

Cartridge 

 

Head 

Body 

Ink 

Cap 

 

 Plug 

 A8 

Body 

head 

Cartridge 

 

ink 

plug 

Cap 

 A9 

Head 

Cartridge 

Ink 

 

Body 

Cap 

 Plug 

A10 
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Level 

For example, for the first two trees of assembling in the Fig. 

3, the sets intermediate steps for assembling the pen  𝐸𝐴1
and 

 𝐸𝐴2
are given. They are directly involved in the calculation 

of the distance between 𝐴1and 𝐴2 as described in the 

example in paragraph 2.2.  

 

 EA1
 = EA2

 = X -1=5. 

 

EA1
= { he, cr ,  bd, pl ,  he, cr, in ,  he, cr, in, bd, pl , 

{te, cr, in, cp, co, bo}} 

TEA2
= { he, cr ,  he, cr, in ,  he, cr, in, bd , 

 he, cr, in, bd, pl , {he, cr, in, bd, pl, cp}} 

 

d(A1, A2)=0.16 

 

The calculated distances between the different assembly 

trees are given in Table I. 

 

 

 

TABLE I. MATRIX OF DISTANCES BETWEEN THE TREES OF ASSEMBLY 

  𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10  

𝐴1 0.000 0.160 0.386 0.326 0.200 0.470 0.316 0.266 0.250 0.226 

𝐴2  0.000 0.380 0.246 0.100 0.440 0.300 0.166 0.233 0.066 

𝐴3   0.000 0.133 0.140 0.100 0.080 0.213 0.146 0.319 

𝐴4    0.000 0.146 0.233 0.213 0.080 0.280 0.180 

𝐴5     0.000 0.380 0.200 0.066 0.313 0.166 

𝐴6      0.000 0.180 0.313 0.246 0.313 

𝐴7       0.000 0.133 0.066 0.233 

𝐴8        0.000 0.200 0.100 

𝐴9         0.000 0.300 

𝐴10           0.000 
 

III.A.3 Exploitation 

From the distance matrix, two methods can be applied to obtain results:  

From the distance matrix, two methods can be applied to 

obtain results:  

 The direct method which is to choose first the best 

range according to a criterion such as the presence of 

maximum parallelism between operations (this feature 

allows the reactivity). In this case, the range ensuring 

maximum parallelism is the range of minimum depth. The 

application to the case of the pen, gives the range 𝐴1 as the 

best in the sense of parallel operations. Alternative ranges 

are then selected based on their proximity to the sense of 

distance. Their number is usually set arbitrarily by the 

company, commonly 0-3. If we determine the three ranges 

closest to 𝐴1 range, we obtain a sequence of ranges entirely 

ordered in the proximity described by the set  

𝐺𝑟𝑜𝑢𝑝𝑒(𝐴1) = {𝐴2,𝐴10 ,𝐴5}  

 The second method which is based on the 

classification is to apply a partitioning algorithm of the 

distance matrix. We use a hierarchical clustering algorithm 

taking into account the criterion of the maximum diameter. 

Then, from the classification tree given in Fig.4 and by 

making cuts in the tree, we get a number of families of 

assembly ranges. The choice of the threshold depends on the 

criteria (number of ranges replaced, the closest ranges to a 

given range, etc), which determines the objectives of the 

company. This method has the advantage of providing a 

global view of coherent families’ ranges. 
 

 
 

Fig.4. Classification tree ranges, (Ai  denote i;i =1,10) 

In search of a family which forms the best range and ranges 

replacement, it is necessary to cut the classification tree at an 

appropriate level. For example, a group made up of a single 

range represents little interest. The A1 range being here the 

best, the cut must be made at a level α > 0.266 to a 

level 0.266 < 𝛼 < 0.313, we obtain the three families of 

ranges in Fig. 5.    

𝐹𝑎𝑚𝑖𝑙𝑦 𝐹1 ∶ 𝐹1 = {𝐴1,𝐴2,𝐴5,𝐴8,𝐴10}

𝐹𝑎𝑚𝑖𝑙𝑦 𝐹2 ∶ 𝐹2 = {𝐴7,𝐴9}
𝐹𝑎𝑚𝑖𝑙𝑦 𝐹3 ∶ 𝐹3 = {𝐴3,𝐴4,𝐴6}

  

 

Fig.5. coherent family ranges 
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We find that the family 𝐹1contains the best range and range 

replacement which number depends on the level of the cut.  
 

In this first case, the method used to solve the general 

problem of classification ranges for the analysis of different 

logical ranges of a product for their selection. The distance 

Marczewski-Steinhaus is particularly adapted for solving 

this problem. To improve the reactivity of the assembly 

system and thereby its robustness, we propose a general 

approach, including the choice of a better range in the sense 

of a criterion such as the maximum parallelism of operations 

and of its range of replacement to overcome the inevitable 

vicissitudes of production, such as ,component failure or 

unavailability of a machine. So, the method exploits the 

classification tree to give families, thereby, one of them 

contains the best range and the range of alternatives. 

 

B. Case of comparing similarity coefficients: 

 

III.B.1Data Base:  

We take from [16,19] the initial data matrix   (Table II). It 

has 8 machines which groups should be identified in order to 

create the production cells. Each cell will contain a number 

of machines that processes a product family. It is based here 

on the 20 similarity indices compared in [16] to classify the 

machines matrix in families. 
 

 

TABLE II. THE INITIAL MATRIX OF 8 MACHINES 

Parts 

M
ach

in
es 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 1 1     1 1  1  1 1  1 1  1  

2   1 1  1 1       1    1  1 

3  1      1 1  1  1 1  1 1  1  

4   1 1  1 1   1        1  1 

5 1    1 1    1  1   1  1    

6 1    1    1 1  1   1     1 

7   1 1  1 1    1 1      1  1 

8   1 1  1 1           1  1 
 

Figure 6 shows all obtained classifications/partitions. 
 

 
 

Fig.6. The classification of 20 similarity indices
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TABLE III. MATRIX OF DISTANCES BETWEEN THE TREES OF INDICES OF COEFFICIENTS 

 

 

 

 

 

 

 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10  𝐴11  𝐴12  𝐴13  𝐴14  𝐴15  𝐴16  𝐴17  𝐴18  𝐴19 𝐴20  

𝐴1 0 0.3810 0 0.3810 0.0357 0.3095 0.3146 0.3478 0.0357 0.3748 0.0357 0.0816 0.0357 0.0357 0.0816 0.5722 0.1097 0.3387 0.3388 0 

𝐴2  0 0.3810 0 0.3810 0.1071 0.0816 0.5000 0.3810 0.1857 0.3809 0.3963 0.3810 0.3810 0.3963 0.5607 0.3238 0.4976 0.4976 0.3810 

𝐴3    0.3810 0.0357 0.3095 0.3146 0.3478 0.0357 0.3748 0.0357 0.0816 0.0357 0.0357 0.0816 0.5723 0.1097 0.3388 0.3388 0 

𝐴4     0.3810 0.1071 0.0816 0.5000 0.3809 0.1857 0.3809 0.3963 0.3810 0.3810 0.3963 0.5607 0.3238 0.4976 0.4976 0.3810 

𝐴5     0 0.3095 0.3121 0.3197 0 0.3476 0 0.1097 0 0 0.1097 0.5697 0.0816 0.3048 0.3048 0.0357 

𝐴6      0 0.1862 0.5000 0.3095 0.2571 0.3095 0.3172 0.3095 0.3095 0.3172 0.5607 0.2524 0.4677 0.4677 0.3095 

𝐴7       0 0.4578 0.3120 0.1811 0.3120 0.3810 0.3121 0.3121 0.3810 0.5723 0.3044 0.4701 0.4701 0.3146 

𝐴8        0 0.3197 0.4000 0.3197 0.3963 0.3197 0.3197 0.3963 0.5488 0.2952 0.2214 0.2214 0.3478 

𝐴9         0 0.3476 0 0.1097 0 0 0.1097 0.5697 0.0816 0.3048 0.3048 0.0357 

𝐴10           0 0.3476 0.4024 0.3476 0.3476 0.4024 0.5440 0.3310 0.4571 0.4571 0.3748 

𝐴11            0 0.1097 0 0 0.1097 0.5697 0.0816 0.3048 0.3048 0.0357 

𝐴12             0 0.1097 0.1097 0 0.5607 0.1786 0.3833 0.3833 0.0816 

𝐴13              0 0 0.1096 0.5697 0.0816 0.3048 0.3048 0.0357 

𝐴14               0 0.1096 0.5697 0.0816 0.3048 0.3048 0.0357 

𝐴15                0 0.5607 0.1786 0.3833 0.3833 0.0816 

𝐴16                 0 0.5488 0.5440 0.5440 0.5723 

𝐴17                  0 0.3143 0.3143 0.1097 

𝐴18                   0 0 0.3388 

𝐴19                   0 0.3388 

𝐴20                     0 



ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                  2883 

III.B.2. Calculation of distances: 

To compare the similarity indices, we compare the 

above-obtained partitions using the distance Marczewski 

– Steinhaus[1]. 

For example, for the first two dendrograms of Fig. 1, the 

sets of intermediate steps for classification  EA1
 and 

 EA2
are given. They are directly involved in the 

calculation of the distance between A1 and A2as 

described in the example in paragraph II 

 𝐸𝐴1
 = 𝐸𝐴2

 = 𝑋 -1=7. 

𝐸𝐴1
=  

 3,8 ,  1,6 ,  3,8,5 ,  1,6,2 ,
 3,8,5,1,6,2 ,  3,8,5,1,6,2,7 ,

 3,8,5,1,6,2,7,4 
  

𝐸𝐴2
= { 3,4 ,  1,6 ,  3,4,5 ,  1,6,8 ,  3,4,5,7 , 

 3,4,5,7,1,6,8 ,  3,4,5,7,1,6,8,2 } 

     𝑑(𝐴1,𝐴2)=0.3810 

 

 

The calculated distances between the different trees, are 

given in Table III. 

 

III.B.3 Operating: 

From the distance matrix and applying the algorithm of 

hierarchical classification analysis, a dendrogram was 

obtained in fig.7. By making cuts in this latter according 

to the fixed objectives, we obtain a number of families of 

indices.  

 

Fig.7. Similarity indices classification 

To find family of indices, it is necessary to cut the 

classification tree at an appropriate level. We will choose  

0.221 < 𝛼 < 0.252. 
For this level, we obtain the four families of indices as 

shown in fig.8. 

 

 

FamilleF1 ∶ F1 = {18,19,8}

Famille F2 ∶ F2 = {1,20,3,5,11, 13,14,9,17,12,15}

Famille F3 ∶ F3 =  2,4,7,6,10 

Famille F4 ∶ F4 = {16}

  

 
Fig.8. groups of coherent similarity indices 

 

We deduce that we found the same results that are in the 

article [16] and we can say that the family F2 contains 

the most powerful indices as Jaccard, Sorenson, 

Kulczynski and Sokal and Sneath 2. However, the F3 

family contains inefficient indices, namely: Hamann, 

Simple matching, Rogers and Tanimoto.  

IV. CONCLUSION 

In this paper, we presented a universal approach that 

aims to provide an efficient and effective tool for 

grouping different methods for classification. This 

approach gives the closest and the alternative families. 

We have presented its application to solve the general 

problem of classification ranges for the analysis of 

different logical ranges for selection of a product and 

compare different similarity coefficients methods. 

Finally, it is interesting to continue the application of this 

method of classification in different contexts in which 

the goal is to generalize classification method 

comparison for any partitioned data. Simply just have 

their hierarchical structures.  
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